6 research outputs found

    Conditional-Entropy Metrics for Feature Selection

    Get PDF
    Institute for Communicating and Collaborative SystemsWe examine the task of feature selection, which is a method of forming simplified descriptions of complex data for use in probabilistic classifiers. Feature selection typically requires a numerical measure or metric of the desirability of a given set of features. The thesis considers a number of existing metrics, with particular attention to those based on entropy and other quantities derived from information theory. A useful new perspective on feature selection is provided by the concepts of partitioning and encoding of data by a feature set. The ideas of partitioning and encoding, together with the theoretical shortcomings of existing metrics, motivate a new class of feature selection metrics based on conditional entropy. The simplest of the new metrics is referred to as expected partition entropy or EPE. Performances of the new and existing metrics are compared by experiments with a simplified form of part-of-speech tagging and with classification of Reuters news stories by topic. In order to conduct the experiments, a new class of accelerated feature selection search algorithms is introduced; a member of this class is found to provide significantly increased speed with minimal loss in performance, as measured by feature selection metrics and accuracy on test data. The comparative performance of existing metrics is also analysed, giving rise to a new general conjecture regarding the wrapper class of metrics. Each wrapper is inherently tied to a specific type of classifier. The experimental results support the idea that a wrapper selects feature sets which perform well in conjunction with its own particular classifier, but this good performance cannot be expected to carry over to other types of model. The new metrics introduced in this thesis prove to have substantial advantages over a representative selection of other feature selection mechanisms: Mutual information, frequency-based cutoff, the Koller-Sahami information loss measure, and two different types of wrapper method. Feature selection using the new metrics easily outperforms other filter-based methods such as mutual information; additionally, our approach attains comparable performance to a wrapper method, but at a fraction of the computational expense. Finally, members of the new class of metrics succeed in a case where the Koller-Sahami metric fails to provide a meaningful criterion for feature selection

    Conditional-entropy metrics for feature selection

    No full text
    We examine the task of feature selection, which is a method of forming simplified descriptions of complex data for use in probabilistic classifiers. Feature selection typically requires a numerical measure or metric of the desirability of a given set of features. The thesis considers a number of existing metrics, with particular attention to those based on entropy and other quantities derived from information theory. A useful new perspective on feature selection is provided by the concepts of partitioning and encoding of data by a feature set. The ideas of partitioning and encoding, together with the theoretical shortcomings of existing metrics, motivate a new class of feature selection metrics based on conditional entropy. The simplest of the new metrics is referred to as expected partition entropy or EPE. Performances of the new and existing metrics are compared by experiments with a simplified form of part-of-speech tagging and with classification of Reuters news stories by topic. In order to conduct the experiments, a new class of accelerated feature selection search algorithms is introduced; a member of this class is found to provide significantly increased speed with minimal loss in performance, as measured by feature selection metrics and accuracy on test data. The comparative performance of existing metrics is also analysed, giving rise to a new general conjecture regarding the wrapper class of metrics. Each wrapper is inherently tied to a specific type of classifier. The experimental results support the idea that a wrapper selects feature sets which perform well in conjunction with its own particular classifier, but this good performance cannot be expected to carry over to other types of model. The new metrics introduced in this thesis prove to have substantial advantages over a representative selection of other feature selection mechanisms: Mutual information, frequency-based cutoff, the Koller-Sahami information loss measure, and two different types of wrapper method. Feature selection using the new metrics easily outperforms other filter-based methods such as mutual information; additionally, our approach attains comparable performance to a wrapper method, but at a fraction of the computational expense. Finally, members of the new class of metrics succeed in a case where the Koller-Sahami metric fails to provide a meaningful criterion for feature selection.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Accurate whole human genome sequencing using reversible terminator chemistry

    No full text
    DNA sequence information underpins genetic research, enabling discoveries of important biological or medical benefit. Sequencing projects have traditionally used long (400-800 base pair) reads, but the existence of reference sequences for the human and many other genomes makes it possible to develop new, fast approaches to re-sequencing, whereby shorter reads are compared to a reference to identify intraspecies genetic variation. Here we report an approach that generates several billion bases of accurate nucleotide sequence per experiment at low cost. Single molecules of DNA are attached to a flat surface, amplified in situ and used as templates for synthetic sequencing with fluorescent reversible terminator deoxyribonucleotides. Images of the surface are analysed to generate high-quality sequence. We demonstrate application of this approach to human genome sequencing on flow-sorted X chromosomes and then scale the approach to determine the genome sequence of a male Yoruba from Ibadan, Nigeria. We build an accurate consensus sequence from >30x average depth of paired 35-base reads. We characterize four million single-nucleotide polymorphisms and four hundred thousand structural variants, many of which were previously unknown. Our approach is effective for accurate, rapid and economical whole-genome re-sequencing and many other biomedical applications

    Accurate whole human genome sequencing using reversible terminator chemistry

    No full text
    corecore